
Serge Kosyrev
Curriculum vitae

ROLE SOUGHT

⇒ Technologist

⇒ Architect / team lead

⇒ Senior software engineer

SYSTEM BUILDING

⇒ a SoC-targeted system software development and
assurance toolchain (IEEE 1149.1)

⇒ two transpilers (one used in critical production
environment)

⇒ a package manager and a proto-CI system for a
diverse environment (personal project)

⇒ a hypervisor-based secure endpoint (prototype);
the hypervisor was written from scratch

HIGH-LEVEL DECLARATIVE DESIGN

& PROGRAMMING

⇒ pure, typed, functional: to support program rea-
soning, refactoring and assurance
• Haskell (expressive higher-kinded & dependent

types, reactive (FRP), lazy evaluation)

⇒ metaprogramming: expanding ability to express
solutions to very complex problems
• Common Lisp (an extensible compiler)

PROGRAM SEMANTICS,
COMPILATION AND ANALYSIS

⇒ written two transpilers, an assembler/disassembler
and a control flow analysis tool

⇒ had a passing interest in flow analysis (CFA/DFA)
of higher-order programming languages

MAINSTREAM

⇒ mid-level POSIX programming
• debugging sockets, threads, profiling, zero-copy

(going fast), IPC, conventional GUI (gtk2)

⇒ low-level hardware programming
• debugging C, x86-64, MIPS, Linux kernel, bare-

metal hypervisor with printf(), gdb, JTAG

MISCELLANEOUS

⇒ entry-level OpenGL and shaders

⇒ TeX / LaTeX / TikZ, some Web (front/back)

⇒ expert-level Linux administration & trouble-shooting

⇒ knowledge visualisation and interaction systems
• this has been my long-time fascination

b Zelenograd, Moscow (RU)

T +7 (905) 5380951

B kosyrev.serge protonmail com

E deepfire.github.io

EDUCATION

2000-2001 Engineering institute
National Research University of
Electronic Technology, Moscow

2002-2006 Business school
Institute of International Business
Education, Moscow

PUBLIC PROJECTS

2017 undisclosed project
a knowledge representation
and visualisation tool. Don’t
feel like talking about it yet

2017 reflex-glfw
a library facilitating use of Re-
flex FRP with OpenGL/GLFW

2017 Barrelfish OS contributions
Nix-based build environment
reproducibility (merged up-
stream), stack traces (work in
progress)

2015-ONGOING Contributions to Nixpkgs
packaging software I need
for the NixOS Linux distribu-
tion/package repository

2015 Ruin
a heterogenous, declarative
build system: when your build
is too twisted with conventional
tools

2014-2016 weld, youtrack, org-magit-
review, some unreleased)
tools for git and project man-
agement

2013 cl-org-mode
a suite of parsers/serialisers
for org-mode

2011-2013 partus
a transpiler of a subset of Com-
mon Lisp to Python3

2008-2011 executor, gittage, desire
a suite of libraries culminating
in a git-based distributed soft-
ware delivery and automated
testing system (that never re-
ally took off)

https://www.haskell.org/
https://common-lisp.net/
http://www.texample.net/tikz/
mailto:kosyrev.serge protonmail com
http://deepfire.github.io
https://github.com/deepfire/reflex-glfw
https://github.com/reflex-frp/reflex-platform
https://github.com/reflex-frp/reflex-platform
http://www.glfw.org/
https://github.com/BarrelfishOS/barrelfish/commits/master?author=deepfire
https://nixos.org/nix/
https://github.com/deepfire/barrelfish/commits/x86-64-backtrace?author=deepfire
https://github.com/deepfire/barrelfish/commits/x86-64-backtrace?author=deepfire
https://github.com/NixOS/nixpkgs/commits/master?author=deepfire
https://nixos.org/nixpkgs/
http://nixos.org/
https://github.com/deepfire/Ruin
https://github.com/deepfire/weld
https://github.com/deepfire/youtrack
https://github.com/deepfire/org-magit-review
https://github.com/deepfire/org-magit-review
https://github.com/deepfire/cl-org-mode
https://github.com/deepfire/partus
https://github.com/deepfire/executor
https://github.com/deepfire/gittage
https://github.com/deepfire/desire


WORK EXPERIENCE

SEPTEMBER 2014 - NOW (2 YEARS 5 MONTHS)
Positive Technologies

Department of virtualisation, head
Leading development of a hypervisor-based
secure endpoint prototype:

⇒ Managing a diverse team of up to 13 members,
mostly researchy-kind of people

⇒ Leading the design and architecture effort

• security architecture, interdomain communica-
tion

• facilitation of consensus in a heavily democratically-
slanted context

• too much conflict management

⇒ Implementation all across the board: hypervisor,
userspace and tooling

⇒ Organised further infrastructure development: build
system, testing automation & continuous inte-
gration

• three build systems, one culminating in an open
source project (building a deliverable package
including hypervisor, kernel drivers, OS services
and userspace is a non-trivial task): Ruin

• guiding deployment of Nix and Docker as means
for reproducible builds in a precisely specified
environment

⇒ Resource allocation and planning, hiring

⇒ Talking to sales people

⇒ Making presentations for external consumption

⇒ Developed an administrative process, to facili-
tate staged, planned materialisation of a high-
level project vision. Implementation of this pro-
cess was ultimately unsuccessful

⇒ Personal decision to end the project

Research direction:

⇒ Organised research into Intel Management En-
gine: threats, deactivation methods. This re-
search culminated in a deactivation tool and a
conference talk.

⇒ Organised a research survey on the kernels suit-
able as basis for the next product iteration.

⇒ Produced a preliminary design of a next-generation
hypervisor-based secure endpoint system based
of the Barrelfish OS.

⇒ Produced a research survey on the state-of-art
in security kernels:

• origin of security kernels

• fundamental problem of security policy enforce-
ability

• separation kernels

• state of art in verified kernels

JANUARY 2013 - AUGUST 2014 (1 YEAR 8 MONTHS)
Positive Technologies

Department of virtualisation,
team lead
Spear-headed development of a hypervisor-based
endpoint prototype for consumer x86-64-based
hardware:
...think consumer-friendly Qubes OS

⇒ overall architecture

⇒ build system & testing automation

⇒ general implementation

• memory management

• interdomain communication

⇒ code repository maintenance

⇒ managing a growing team

JANUARY 2012 - DECEMBER 2012 (1 YEAR)
Positive Technologies

Department of advanced development,
Senior Developer / Analyst

⇒ Supported further deployment of the new sys-
tem, through applying first-hand experience of
developing a couple of forensics analysis mod-
ules within the new framework:

• a fast regex on steroids

• analysis of the Windows eventlog event streams
and correlation heuristics for suspicious pat-
terns

⇒ Analysis of usage practices and shortcomings of
in-house knowledge base development infrastruc-
ture.

⇒ Early research on the viability of a secure end-
point based on a virtualisation-enforced isola-
tion. Transformation of the management’s high-
level concept of such an endpoint into a techni-
cal vision.

https://www.ptsecurity.com/
https://github.com/deepfire/Ruin
https://nixos.org/nix/
https://github.com/ptresearch/me-disablement/blob/master/How to become the sole owner of your PC.pdf
http://www.barrelfish.org/
https://www.ptsecurity.com/
https://www.qubes-os.org/


OCTOBER 2010 - DECEMBER 2011 (1 YEAR 2
MONTHS)

Positive Technologies

Senior developer

⇒ Produced a detailed (HyperSpec-style) reference
specification for semantics of an in-house ad-
hoc dataflow language (including relevant parts
of its runtime system) used to capture domain-
specific knowledge used by the flagship company
product.

⇒ In collaboration with in-house domain experts,
captured the design requirements for a next gen-
eration of the dataflow language.

⇒ Designed alternate, Python3-based syntax & se-
mantics for the dataflow language. Implemented
a runtime system for these semantics.

⇒ Designed and implemented a transpiler (inter-
language compiler) (in Common Lisp) from the
original ad-hoc dataflow language to the new Python
semantics. The transpiler included a measure
of simple static analysis and helped catching a
number of bugs in the knowledge base.

⇒ Built an online compilation service, to facilitate
smooth transition of the constantly evolving knowl-
edge database.

⇒ Oversaw a successful transition of the entire knowl-
edge base from the old system to the new lan-
guage & runtime.

OCTOBER 2003 - SEPTEMBER 2010 (7 YEARS)
Elvees
Developer

⇒ Maintenance of a Linux kernel port to the in-
house Elvees Multicore series of SoCs. Linux
kernel driver development (NICs, custom proto-
col serial interlink, DSP access device).

⇒ Development and maintainership of a pre-existing
JTAG access toolstack used to facilitate both chip
validation (in-house engineers) and software de-
velopment (both in-house and external). The tool-
stack consisted of a portable (Windows, Linux)
low-level JTAG TAP access library, a portable
console-based debugger and a Windows IDE plu-
gin.

⇒ Developed a series of binary analysis tools for the
Multicore platform:

• a library for declaratively-specified assemblers
and disassemblers, and its mips32 instance:
assem. Attempts of its extension to x86-64 ul-
timately failed.

• a library for declaratively-specified parsers: bin-
type

• a declaratively-specified ELF parser: cl-io-elf

• a MIPS binary analysis library and application
used to employ flow-sensitive analysis to search
application binaries for instruction traces with
particular properties, that were found to be prob-
lematic on certain company CPUs: turing

in-house version of the tool included a McCLIM-
based GUI, facilitating interactive search and
visualisation of problematic subsequences in the
basic block graph

⇒ Developed an alternate JTAG toolstack, that was
ultimately abandoned:

• a library for declarative description of register
format/sets as well as devices and their hier-
archies. Pro: a single, human-readable piece
of text facilitating both register accessor code
generation, validation and documentation pur-
poses. The library supported partial validation
of device / register / field / value usage correct-
ness at compile-time: bitmop

• extensions and a port of a Common Lisp GDB
stub library by Julian Stecklina: gdb-remote

• a tool for high-speed flashing of JTAG target
devices, based on a combination of host-target
bulk transfer and a code generator producing a
platform/flash-chip-specific flashing routine on
the target

• a programmable debugger substrate, based on
the above: common-db

• a toolchain, facilitating automation of Linux ker-
nel debugging experience, based on above

⇒ Consumer-ready packaging of the high-speed flash-
ing tool: console UI, documentation and support
request servicing.

⇒ Developed a customization in the GCC code gen-
erator to work around an FPU bug in a version
of company CPU product

⇒ Helped to identify several CPU bugs: timing-sensitive
cache/TLB interaction, bus access anomalies

https://www.ptsecurity.com/
http://clhs.lisp.se/Front/Contents.htm
http://multicore.ru/index.php?id=146
https://en.wikipedia.org/wiki/ELVEES_Multicore
https://github.com/deepfire/assem
https://github.com/deepfire/bintype
https://github.com/deepfire/bintype
https://github.com/deepfire/cl-io-elf/blob/master/elf.lisp
https://github.com/deepfire/turing
https://common-lisp.net/project/mcclim/excite.html
https://github.com/deepfire/bitmop
https://github.com/deepfire/gdb-remote
https://github.com/deepfire/common-db


KEYWORDS

LANGUAGES Haskell, Common Lisp,
Python, C99

HASKELL type-driven design, FRP, FFI,
making DSLs with Template
Haskell, higher-kinded types,
existentials, light dependent
types (type families, GADTs,
data kinds), exploiting
laziness, shell-like
programming; dabbling with:
STM, free (and freer) monads;
excited about: linear types,
dependent types

COMMON LISP DSL design, macros, deep
exploitation of staging,
monadic parsing, FFI, GUI,
low-level hardware access

VIRTUALIZATION x86-64 platform, VMx, EPT,
VT-d, interrupt virtualisation,
PCI device passthrough, CPU
takeover, firmware hooking

OS KERNELS Linux, Barrelfish

BARE METAL x86-64, mips32

SECURITY separation kernels, security
policy enforceability, security
modeling, attack surface
analysis

ANALYSIS transpilers
(language-to-language
compilers), passing interest in
control flow/data flow
analysis (aka CFA/DFA)

HIGH LOAD whole-system performance
analysis, data path analysis,
zero-copy programming, bcc,
perf, strace, gprof, sar, iotop,
blktrace, vmstat, slabtop,
tcpdump

DEV TOOLS ghc, sbcl, gcc, clang,
valgrind et al., GDB, VOGL,
make, shell, git, emacs,
intero, slime, git-svn, Nix

DEVOPS Travis CI, phabricator, gerrit,
gitlab, github, NixOS, docker,
personal projects

OS ADMIN NixOS, Debian, Fedora,
CentOS, Nix, selinux,
systemd, postgresql, qmail,
tinydns, iptables, OpenVZ,
docker, OpenVPN

KEYWORDS

MANAGEMENT org mode, Taskjuggler,
YouTrack, yEd, VUE

TYPESETTING TEX, LATEX, TikZ

UX (GUI) any haskell FRP GUI library I’ll
likely be comfortable with,
McCLIM, gtk; likely can do Qt
without much of a problem

OPENGL legacy GL with display lists,
LambdaCube3d (purely
functional GPU pipeline
programming), VOGL (Valve
OpenGL debugger); generally
find interactive visualisation
fascinating

WEB html, css, jquery; excited about:
GHCJS, WebAssembly,
TypeScript, Elm

RESEARCH extended experience reading
scientific publications on a
variety of topics: programming
language theory, type theory,
compiler internals, hypervisor &
OS implementation,
vulnerability exploitation,
computer security in general

RELOCATION

Possible, but not before Q3/Q4 2017.

COMMUNICATION SKILLS

RUSSIAN Native speaker

ENGLISH Oral: fair – Written: good

FRENCH Stale, barely functional, but used to
have good pronounciation : -)

NON-WORK STUFF I ENJOY

⇒ running

⇒ fasting

⇒ mountains of all kinds: hiking, alpinism, rock
climbing (in past, sadly..)

https://www.haskell.org/
https://common-lisp.net/
http://just-bottom.blogspot.ru/2013/09/a-few-reasons-why-functional-reactive.html
http://okmij.org/ftp/Computation/free-monad.html
https://www.quora.com/What-are-linear-type-systems
http://conf.researchr.org/event/icfp-2016/plmw-icfp-2016-introduction-to-dependent-types
http://www.barrelfish.org/
https://en.wikipedia.org/wiki/Separation_kernel
https://iovisor.github.io/bcc/
https://iovisor.github.io/bcc/
https://en.wikipedia.org/wiki/Glasgow_Haskell_Compiler
http://www.sbcl.org/
http://valgrind.org/
https://en.wikipedia.org/wiki/VOGL
https://commercialhaskell.github.io/intero/
https://github.com/slime/slime#overview
http://nixos.org/nix/
https://travis-ci.org/
https://www.phacility.com/
https://www.gerritcodereview.com/
http://nixos.org/nix/
http://nixos.org/
http://nixos.org/nix/
https://openvz.org/Main_Page
https://openvpn.net/
http://orgmode.org/
http://taskjuggler.org/
http://www.yworks.com/products/yed
http://vue.tufts.edu/index.cfm
http://www.texample.net/tikz/
https://common-lisp.net/project/mcclim/excite.html
http://www.lambdacube3d.com/
https://en.wikipedia.org/wiki/VOGL
https://github.com/ghcjs/ghcjs#haskell-to-javascript-compiler
https://www.typescriptlang.org/
http://elm-lang.org/

